REO ELEKTRONIK AG
Brühler Straße 100
D 42657 SOLINGEN
Tel． 0212 ／8804－0
Fax． 0212 ／8804－188
e－mail：sales＠reo．de web：www．reo．de

REOVIB MTS 441， 442
Thyristorsteuerungen für Schwingförderer \mathcal{C}

1－und 2－Kanal－Steuergeräte，für Schwingfrequenzen gleich oder dem doppelten der Netzfrequenz．
Stufenlose Verstellung der Förderleistung durch Steuerung der Netzspannung mittels
Phasenanschnitt．Bedienung der Geräte über Tasten und LED－Display，alle Einstellungen sind von außen möglich．Konstante Förderleistung auch bei Netzspannungsschwankungen．
Funktionsumfang：
Sanftanlauf，Sanftauslauf，Max．－Begrenzung，Schwingfrequenz 50／100 Hz（ $60 / 120 \mathrm{~Hz}$ ）
Start／Stop－Eingang，Status－Ausgang，Füllstandsteuerung（Stauschaltung），Ventilausgang（Blasluft）
Interne Verknüpfung Kanal 1 sperrt Kanal 2 oder Kanal 2 sperrt Kanal 1 （bei MTS 442）．
Technische Daten：
Eingangsspannung：
Ausgangsspannung：
Ausgangsstrom：
Freigabeeingang：
Sensor Stauschaltung：
Statusausgang（Ein／Aus）：
Ventilausgang：
Betriebstemeratur：
Lagertemperatur：
Empf．Vorsicherung：

MTS 441
MTS 442
115 ／ 240 V， $50 / 60 \mathrm{~Hz}$
0．．． 100 ／0．．． 210 V
6 A 6 A（10 A ges）
24 V，DC oder Kontakt
24 V，PNP
24 V，DC／ 20 mA
$24 \mathrm{~V}, \mathrm{DC} 100 \mathrm{~mA}$
$0 \ldots+45^{\circ} \mathrm{C}$
$-10 \ldots+80^{\circ} \mathrm{C}$
16 A

Bedienung：

Die Einstellung erfolgt durch eine Menüsteuerung．Die unter－ schiedlichen Parameter werden durch Eingabe eines Zugriffs－ code erreicht．
Alle Einstellungen beginnen mit Drücken der P －Taste，gefolgt von der Wahl der Menünummer mit den Pfeil－Tasten．

Einstellverhalten

Kurzes Drücken der Pfeiltasten erhöht／verringert die Anzeige um eine Stelle，längeres Drücken erhöht／verringert um eine Zehnerpotenz．
Geänderte Einstellwerte werden durch Verlassen des Menüs oder durch Nichtbetätigen der Tasten nach 60 Sekunden dauerhaft gespeichert．

Betriebsanzeige

Kanal 1	－ঢ．	Sollwert in \％
Kanal 2		Sollwert in \％
	ハ！じー	Freigabe AUS
	F！！	Staustrecke voll
$\bullet 0$	に！ー！ －■！し！い	Verzögerungszeit läuft
		Stop über＂0＂Taste
	ローナーム	$\begin{array}{ll} \text { II } & \begin{array}{l} \text { Sensor } \\ \text { time out } \end{array} \end{array}$
	－－－	Einschaltphase

Sicherheitshinweise

Diese Beschreibung enthält die erforderlichen Informationen für den bestimmungsgemäßen Gebrauch der darin beschriebenen Produkte. Sie wendet sich an technisch qualifiziertes Personal.
Qualifiziertes Personalnsind Personen, die aufgrund ihrer Ausbildung, Erfahrung und Unterweisung sowie Ihrer Kenntnisse über einschlägige Normen, Bestimmungen Unfallverhütungsvorschriften und Betriebsverhältnisse von dem für die Sicherheit der Anlage Verantwortlichen berechtigt worden sind, die jeweils erforderlichen Tätigkeiten auszuführen, und dabei mögliche Gefahren erkennen und vermeiden können (Defination für Fachkräfte laut IEC 364)Stimmen Netzspannung, Betriebssspaanung

WARNUNG!

Gefährliche Spannung!
Nichbeachtung kann Tod, schwere Körperverletzung oder Sachschaden verursachen.
Trennen Sie Versorgungsspannung vor Montage- oder Demontagearbeiten sowie bei Sicherungswechsel oder Aufbauänderungen.
Beachten Sie die im spezifischen Einsatzfall geltenden Unfallverhütungs- und Sicherheitsvorschriften.
Vor Inbetriebnahme ist zu kontrollieren, ob die Nennspannung des Gerätes mit der örtlichen Netzspannung übereinstimmt.
Not-Aus-Einrichtungen müssen in allen Betriebsarten wirksam bleiben. Entriegeln der Not-Aus-Einrichtung darf kein unkontrolliertes Wiederanlaufen bewirken. Die elektrischen Anschlüsse müssen abgedeckt sein.
Schutzleiteranschlüsse müssen nach Montage auf einwandfreie Funktion überprüft werden.

Inbetriebnahme

Prüfen !	Stimmen Netzspannung, Betriebssspaanung des Förderers und Gerätespannung überein? Ist die Anschlussleistung des Förderers innerhalb des Geräteleistungsbereiches? Welche mechanische Schwingfrequenz hat das Fördergerät?
Gerät anschliessen nach Anschlussanweisung, auf richtige Erdverbindung achten !	
! Vorsicht!	Eine falsch eingestellte Schwingfrequenz kan zur Zerstörung der angeschlossenen Magnete führen! Stellen Sie sicher, dass bei Halbwellenbetrieb $(50 \mathrm{~Hz} / 3000 \mathrm{~S} / \mathrm{min}$ bzw. $60 \mathrm{~Hz} 3600 \mathrm{~S} / \mathrm{min}$ geeignete Magnete eingesetzt werden.
合 Hinweis!	Fabrikneue Geräte haben eine Grundeinstellung ab Werk s. Tabelle "Einstellmöglichkeiten. Bei unbekannter Geräteeinstellung, zuerst Grundeinstellung mit Menü C 210 "FAC." wiederherstellen
externer Sollwert	Bei Anwendung mit externer Sollwertvorgabe (MTS 441) in Menü C003 "E.S.P" = I setzen, bei Potibetrieb zusätzlich "Pot." = I setzen Minimalwert einstellen: E.S.P. $=0$, mit Displaytasten den bewünschten Minimalwert einstellen, dann E.S.P. $=1$ setzen Anlagenspezifischen Werte einstellen, dann mit Menü C 143 "US.PA." sichern. (Wiederherstellbar mit C 210 "US.PA"). Menüzugriff ggf. mit C 117 "Hd.C." = I verbergen.

Besimmungsgemäße Verwendung

Die hier beschriebenen Geräte sind elektrische
Betriebsmittel zum Einsatz in industriellen Anlagen. Si sind zur Steuerung von elektromagnetischen Schwingförderen konzipiert.

Konformitätserklärung

Wir erklären, dass dieses Produkt mit den folgenden Normen oder normativen Dokumenten übereinstimmt:
EN 61000-6-2 und EN61000-6-4 gemäß den Bestimmungen der Richtline 2004/108/EWG
REO ELEKTRONIK AG, D - 42657 Solingen

Funktionsumfang

Zum Verstellen der Förderleistung muss keine Code-Nummer eingegeben werden, zweimaliges Drücken der P-Taste führt direkt zur Sollwerteingabe.

Code 000 Sollwert Förderleistung

100 \%

Förderleistung einstellen

Intern über Tasten im Display Externer Sollwert 0...+10 V, 0(4)... 20 mA Potentiometer 10 KR	
Füllstandsteuerung oder Grob- Fein Steuerung mit zwei Fördergeschwindigkeiten.	
Interne Verknüpfung für Bedingungen	
24 V , DC Ausgang für Luftventil Anschluss für Luftventil auf interner Klemmleiste	

Code 004 Förderer / Motorbunker

	Kanal 1 0 = Taktbetrieb AUS 1 = Taktbetrieb EIN
	Bunkermotorbetrieb $\begin{aligned} & 0=\text { AUS } \\ & 1=\text { EIN } \end{aligned}$
	Kanal 2 0 = Taktbetrieb AUS 1 = Taktbetrieb EIN
$\text { HE O } \triangle \text {,HE IP }$	Bunkermotorbetrieb $\begin{aligned} & 0=\text { AUS } \\ & 1=\mathrm{EIN} \end{aligned}$
	EIN - Zeit AUS - Zeit
	Betriebsmodus

 I = Ventilausgang Vorlaufzeit 1 Sek. Nachlaufzeit 4 Sek.

Betriebsmodus

Luftventil
Anschluss für Luftventil
auf interner Klemmleiste

Ausgang taktet mit einstellbaren EIN- AUSZeiten	
Betriebsmodus für Bandbunker mit 1-Phasenmotor-Antrieb	
Ausgang taktet mit einstellbaren EIN- AUSZeiten	
Betriebsmodus für Bandbunker mit 1-Phasenmotor-Antrieb	
Einstellung der Takt-Zeit Ein / Aus	

P M

 $\frac{100 \mathrm{~Hz}(120 \mathrm{~Hz})}{a[\mathrm{~mm}]{\underset{-}{100 \%}} \mid}$

Hauptsollwert

Sollwert für langsame Fördergeschwindigkeit.

Begrenzung der Begrenzung
maximalen Förderleistung.

Interne Begrenzung, der Sollwert wird weiterhin mit 0... 100 \% vorgegeben.
+24 V Signal oder geschlossener Kontak gibt Ausgang frei.
+24 V Signal oder geschlossener Kontakt sperrt Ausgang.

Einstellung der Schwingfrequenz ist abhängig vom Förderertyp. Wichtig!
Falsche Frequenz kann zu Schaden am Magnet führen.

Zeitrampe mit der die Förderleistung einschaltet bzw. abschaltet.

MTS 441

110... $240 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$

MTS 441

Sensorsteckdose PNP Sensor (X4.1 und X4.2)

Statusausgänge (X5)

Freigabeeingänge (X6)

Ausgangssteckdose
Eingangskupplung oder Netzkabel

Anschluss für Luftventil auf interner Klemmleiste

MTS 442

Ausgangssteckdose Kanal 1

Eingangskupplung

$1=\mathrm{L}$
$2=-\mathrm{N}$
$3=$

Bestellbezeichnung für Steckverbindungen:

Ausgangsstecker:
Netzeingang:
Füllstand, Freigabe:
Statussignal:

HA-4-K / 090210
HA-4-K-F / 090216
RSV-M12-4 / 090131
RSV-M12-5 / 090132

Beispiel

Beispiel für eine
Förderstation bestehend aus Linear- und Rundförderer mit Vibrationsbunker.

Linear- und Rundförderer werden mit einer REOVIB MTS 442, der Vibrationsbunker mit einer REOVIB MTS 441 gesteuert.

Über ein 1:1 Verbindungskabel ist der Bunkerförderer ist mit dem Rundförderer verrigelt (Statusausgang Rundförderer auf Freigabeeingang Bunkerförderer).

